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scattering15 at the lower strains; such scattering has 
been ignored in deriving (11). 

CONCLUSIONS 

The preliminary results presented here show quite 
clearly that the matrix element for "across the zone 
face" scattering in silicon is quite small and is consistent 
with the results of Long.1 Both Long's results and the 

15 G. Weinreich, T. M. Sanders, Jr., and H. G. White, Phys. 
Rev. 114, 33 (1959). 

INTRODUCTION 

POLARIZED neutron scattering has, in the past 
few years, proved a most useful technique for the 

study of the magnetic properties of solids. The theory 
of the scattering of polarized beams was developed by 
Halpern and Johnson1 in their now classic paper on the 
magnetic scattering of slow neutrons, and the expres­
sions which they derived have been verified experi­
mentally.2-3 In their derivations they restricted their 
attention to the cases of ferromagnets and simple 
antiferromagnets. As a result of this restriction they 
omitted several terms which should appear in the cross 
section for scattering of a polarized beam and in the 
expression for the polarization of the scattered beam. 
These terms are of interest in view of the complicated 
and unusual spin arrangements found in the last few 
years. Two of these terms give rise to an interesting 
polarization effect in the case of scattering by spiral 
spin structures, as proposed recently by Overhauser,4 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939). 
2 C. G. Shull, E. O. Wollan, and W. C. Koehler, Phys. Rev. 84, 

912 (1951). 
3 R. Nathans, C. G. Shull, G. Shirane, and A. Andresen, J. Phys, 

Chem. Solids 10, 138 (1959); R. Nathans, T. Riste, G. Shirane. 
and C. G. Shull (unpublished). 

4 A. W. Overhauser, Bull. Am. Phys. Soc. 7, 241 (1962). 

present ones assume a temperature-independent effec­
tive mass; if, as suggested,16 the effective mass increases 
with temperature, the effect would be to make this 
scattering rate even less. 

As an ancillary result, a value of 8.3±0.3 eV has been 
obtained for Hu, the shear deformation potential of the 
conduction band of silicon. 

16 M. Cardona, W. Paul, and H. Brooks, Helv. Phys. Acta 33, 
329 (1960). 

Nagamiya, and Izyumov5 while another is of interest 
in connection with the imaginary part of the magnetic 
form, factor. 

In this paper complete expressions for the elastic 
scattering cross section of a system of ordered spins 
are derived, along with relations for the polarization of 
the scattered beam. Several examples are presented to 
illustrate the occurrence of the terms omitted by 
Halpern and Johnson. In order to derive the formulas 
we make use of the density matrix description of the 
polarized beam. This was first used by Tolhoek and 
de Groot6 and Wolfenstein7 in the case of nuclear 
scattering, and was applied to the diffraction problem 
by Marshall.8 Particularly clear descriptions of this 
useful concept are given by Fano and by ter Haar.9 

The principal expressions derived are Eq. (15) for the 
cross section for elastic scattering of a polarized beam 
by ordered spins and Eq. (19) for the final polarization 
of a beam elastically scattered by ordered spins. 
Equations (8) and (17) are more general and may be 

5 T. Nagamiya (private communication to R. Nathans); Yu. A. 
Izyumov, Zh. Eksperim. i Teor. Fiz. 42, 1673 (1962) [translation: 
Soviet Phys —JETP 15, 1162 (1962)]. 

6 H. A. Tolhoek and S. R. de Groot, Physica 15, 833 (1949). 
7 L. Wolfenstein, Phys. Rev. 75, 1644 (1949). 
8 W. Marshall, Lectures on Neutron Diffraction, Harvard, 

1959 (unpublished). 
9 U. Fano, Rev. Mod. Phys. 29, 74 (1957); D. ter Haar, Rept. 

Progr. Phys. 24, 304 (1961). 
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The theory of the elastic scattering of polarized neutrons by magnetic crystals with ordered spins is 
developed. Several terms which were omitted by Halpern and Johnson in their original treatment of the 
subject are discussed. These terms vanish in the case of scattering from simple ferromagnetic or antiferro-
magnetic structures, but they give rise to some interesting effects in more complex structures. Among these 
is a polarization effect which occurs in antiferromagnetic spirals, proposed recently by Overhauser, 
Nagamiya, and Izyumov, and an effect which allows the determination of the imaginary part of the form 
factor in noncentrosymmetric systems. General formulas for the cross section and for the polarization of 
the scattered beam are given for arbitrary spin orderings. 
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used for calculating polarization effects in inelastic 
processes. These are not considered in detail in this 
paper, and reference in this regard may be made to 
work of Saenz.10 

CROSS SECTION FOR SCATTERING OF A 
POLARIZED BEAM 

The cross section in Born approximation for scattering 
of a polarized beam is1,8-11 

d2a kf/ m0 \ 2 

— — = - — ) z^tr[%vnKnv«(K)p] 
dti'de' kKlirfi2/ ««' 

/ft2 \ 
XBl {k'2-k2)+Eq,-Eq\ (1) 

\lm0 I 
Here *0(K) is the Fourier transform of the interaction 
between the neutron and the scatterer. The quantum 
numbers q and qf label the initial and final states of 
the scatterer. They may refer to such properties of the 
solid as its state of magnetization, its distribution of 
phonons, etc. The factor pq represents the probability 
that the scatterer is in the initial state labeled 
by q. Usually pq is given by the Boltzmann factor 
e-EqikT(^qfe-

E^ikT)-1. The initial and final wave 
vectors of the neutron are denoted by k and k', respec­
tively, and K=k—k' . The density matrix p is given by 

P = £ l + P . s , (2) 

2TT¥ lye2 

= s Q . 
MQ mc2 

Vn represents the interaction with the nuclei of the 
scatterer, while Vm represents the magnetic interaction 
with the spin and orbital moments of the electrons. 
Here n+dy is the position of a nucleus, n being the 
vector from the origin to the origin of the unit cell in 
which the nucleus is located, while dj is the position 
vector of the nucleus within the unit cell. The position, 
spin, momentum and mass of the ith electron are 
**, »*> p^ and m, respectively, while the spin, gyro-
magnetic ratio, and mass of the neutron are, respec­
tively, s, 7 = — 1.91, and wo. Iny is the spin operator for 
the nucleus at n+dy, Inj is the magnitude of the spin of 

10 A. W. Saenz, Phys. Rev. 119, 1542 (1960). 
11 S. V. Maleev, Zh. Eksperim. i Teor. Fiz. 40, 1224 (1961) 

[translation: Soviet Phys.—JETP 13, 860 (1961)]. 

where 1 is the two-by-two unit matrix, and s is the 
neutron spin operator. The trace in Eq. (1) is under­
stood to be taken only with respect to the neutron spin 
coordinates. The meaning of the vector P in (2) can 
be seen by using the relation 

<a>=tr(pOt), (3) 

where Ct is a quantum mechanical operator and (Cfc) 
denotes the average value of this quantity. We consider 
(s), where s is the neutron spin operator. We have 

< ^ ) = t r ( ^ + ^ P 0 , (4) 

where a = x,y,z, and the summation convention has 
been introduced. The trace of an individual spin 
operator is zero, while tr (sas^) = %&*&. Hence, 

<^)=£**i*==JP* (5) 

The vector P, therefore, represents the polarization of 
the incident neutron beam.9 The magnitude of P is 
unity for a completely polarized beam, and is zero for 
an unpolarized beam. 

When explicit forms for the Fourier transform of the 
potential are substituted in (1), we may immediately 
perform the traces indicated, and we have an expression 
for the cross section which contains the polarization P 
of the incident neutron beam. These explicit forms have 
been given by Halpern and Johnson. Following them 
we can write c0(K) = c0n(K)+eUm(K), where 

this nucleus, and any
+ and anf are, respectively, the 

scattering lengths for neutron spin parallel and anti-
parallel to nuclear spin. To find the cross sections for a 
polarized beam we need only substitute (6) in (1) and 
perform the indicated traces. The evaluation of the 
traces is made easy by using the following formulas8: 

t r l = 2 , 

t r ^ = 0 , 

t r ^ = ^ , (7) 

tr sas^=liea^, 

tr sasW =1 ( 6 « ^ - 8«r8Pt+ 5*8*0 • 

Here a, j8 7, £ run over x, y, z, and ea^y is the unit 

2rff ^ ^ f t ^ s_anj+(lnj+l) + anrlnj _ _ __ _ y , _^ni+~Onj 

and 

•0.(K) = • E exppK- (n+d,-)] 
Mo [ aj 

= CTo+Trs) , 
mo 

. - 2 £ e x p [ 7 K - ( n + d y ) } 
2 / „ y + l . / 2 / , y + l 

inj * S r, 

2irW lye2 r i 
•0m(K) = 7 E « < H KX(*iXK)--(KXPi) 

W n MCZ K } -
(6) 
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antisymmetric tensor of third rank. These formulas follow from the properties of the Pauli spin matrices. 
Substituting (6) in (1) and using (7), we obtain 

d2a/dtt'de' = —Y,pc 
k <JQ 

I ye2\ 

\mc2/ 

X mcl mc\ 

ye1 

+ (—)(q\P-Q*W)W | T0\q)+(—^(q\Qt | q')-(q'\ Q\q)+i[--~-) P. ((q\Q^q')X(q'\Q\q)) 
mcl 

In deriving (8) we have used the relation 

( A X B ) « = I ^ € ^ * 

for the components of the vector product of two vectors 
A and B. We have also omitted terms which are linear 
in the nuclear spins. This is because we must average 
over nuclear spin orientations to obtain the final cross 
sections, and we assume that the nuclear spins are 
randomly oriented. This corresponds to the experi­
mental situation in the vast majority of cases of interest. 

Equation (8) is, except for the above restriction, 
quite general, and gives an expression for the cross 
section for elastic or inelastic scattering of a polarized 
beam. Before specializing to elastic scattering, it is 
worth noting that the last term in (8), a polarization-
dependent purely magnetic contribution to the cross 
section, was not considered by Halpern and Johnson. 
The only polarization-dependent term discussed by 
them was the nuclear-magnetic interference term, also 
included in (8). That a purely magnetic polarization 
dependent term should occur may be seen by considering 
the scattering of polarized neutrons by a spin \ ion in a 
magnetic field. If the ion is in the ground state with 
w * = + i , then a neutron polarized along the negative z 
axis can excite the ion to the ms— — \ state, so that angu­
lar momentum can be conserved if the neutron's spin is 
flipped. The neutron's final energy will be less than its 
initial energy by an amount equal to the excitation 
energy of the ms——\ state of the ion. On the other 
hand, an ion in the m8=-\-% state cannot be excited 
to the ms= — | state by a neutron polarized along the 
positive z axis, since there is no way in which angular 
momentum can be conserved. Hence, in this case, the 
magnetic inelastic scattering cross section depends on 
the neutron polarization. This type of phenomenon is 
described mathematically by the last term of (8). As 

da 
— = £ exp[ iK-(R n i -R n , J 0]{«ni}{a„ 'y}+E({«nM-
d£l' nj,n'j' nj 

x ( { ^ ^ } / n , ( K ) 5 n i P - q n j + { a n , } / n , y * ( K ) 5 ^ y P - q ^ . 

/ ¥ \ 
X5[ (k'2-k2)+Fq,-EA (8) 

\2w0 / 

will be seen, this term can also be of interest in elastic 
scattering from certain complicated spin structures. 

CROSS SECTIONS FOR ELASTIC SCATTERING 

We wish now to limit our considerations to elastic 
scattering from magnetic substances in which the 
individual spins are all rigidly aligned, e.g., ferro­
magnetics, antiferromagnetics, etc., at low tempera­
tures. For elastic scattering, we take | 5 / ) = = k) - We 
assume that the nuclei are rigidly fixed, so that lattice 
vibrations are ignored. This simply amounts to dropping 
Debye-Waller temperature factors in the final result. 
We also assume a Heitler-London model for the mag­
netic structure, so that the ionic spins are taken to be 
localized. If, in addition, the orbital momentum is 
quenched, we may take over Halpern and Johnson's 
result that12 

<8lQ|?> = Zoy exppK- ( n + d ^ l / ^ K ) 
X(q\KX($ajXK)\q). (9) 

Here, Sny is the spin operator for the ion at site ( n j ) , 
while /ni(K) is the form factor for that ion, i.e., the 
Fourier transform of the ion's spin density. 

To derive the elastic scattering cross section, we 
substitute (9) in (8). At very low temperatures only 
the ground state of the spin system will be occupied 
with appreciable probability, and for this state the 
matrix element in (9) is easily evaluated. We have 

(q\Snj\q) = Snffnj, (10) 

where Snj is the magnitude of the spin at lattice site 
( n j ) , and tyny is a unit vector in the direction of this 
spin. Defining 

q^KXivnjXK), (11) 

the elastic scattering cross section becomes 

• { a » ; } 2 ) + ( — ) £ exp[>*K-(Rnr-Rn^ 
\mc2/ nj,n'j' 

/ ye2\2 

-( — ) E exppK.(Rny-lW)] 

)] 

X5„,Jv5ni/a, i*(K)/„y(K)( qn'i-qnH-;P- (qn'yXqny) ], (12) 
R n /=n+dy . 

12 Equation (9) can still be used if the orbital angular momentum is unquenched, as in rare-earth ions. In this event, the form factor 
/(K) must be reinterpreted as 

/ (K)- (L.J / L (X)- f -2S.J / s ( iO) / (L-J+2S-J) , 
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An average over nuclear spin orientations has been 
performed in deriving this expression. The quantities 
{fln/} and {dnj}, the averaged nuclear scattering 
lengths, are denned by 

2/ny+l 

( / n j - + l ) ( f l n J + ) 2 + / n j ( f l n r ) 2 

2 / n i + l 

(13) 

Here Jny is the magnitude of the spin of the nucleus at 
site (n,y)> while <zn/

+ and (itij are, as above, the scatter­
ing lengths of this nucleus for neutron spin parallel and 
antiparallel, respectively, to nuclear spin. 

Equation (12) must be averaged over isotope distri­
bution before it can be applied generally. Also, for 
scattering by disordered alloys, it must be averaged 
over the positions of the components of the alloys. We 
do not treat the latter case in this paper. 

The first line of the equation gives the pure nuclear 
scattering, both coherent and incoherent. The second 

line represents the nuclear-magnetic interference term 
derived by Halpern and Johnson. I t is present only for a 
polarized neutron beam. The last line gives the pure 
magnetic scattering. The term in this proportional to 
P gives the effects mentioned above for spiral spin 
structures. 

We perform the isotopic averaging by defining 

< { * » = £ « C«{*«}, 

where Ca is the concentration of the ath isotope and 
{aa} is the scattering length for this isotope, averaged 
over nuclear spins, as above. Since the isotopes are 
randomly distributed, we have 

<{a n i}{a n 0v})=({^})({^}) for n ^ n ' or j^f, 

= ({ay}2) for n = n ' and 7 = / . 

These two results may be combined to give 

{{dnj}{an'r})= ({aj})({ar}) 

+«{OJ}*)-({*J}Y)MJ>. (14) 

On averaging (12) over isotopic distributions and using 
(14), we obtain finally 

dcr 
— = \Z*e*-*\>\FN(K)\*+NXJ({{afi)-({ajA+(—) E esp[*K- (R n , -R„ v ) ] (<{a y }>/„ , (K) .syP-q„ , 

+({ai})Ui.*(K)S^,¥^n,j)+(~) £ exppK. ( R n - R n V ) ] S n ^ „ y / „ ^ * ( K ) / „ y ( K ) 

/ \mc2/ nj,n'j' 

x f qn' / ' -qnrHP- (qkyXq*,-) V (15) 

Here F^(K) = X)i exppK- dj]({dj}) is the nuclear struc­
ture factor. This equation gives the elastic scattering 
from a set of ordered spins. Most aspects of it are quite 
familiar and have been discussed by many authors in 
the past. In a later section we illustrate the newer 
features as well as some of the well-known ones, by 
examples. 

POLARIZATION OF THE SCATTERED BEAM 

The formulas derived in the preceding sections assume 
an experimental arrangement in which each neutron 

of the scattered beam is counted, regardless of its 

polarization. In some experiments the polarization of the 

final beam is analyzed, and this data can yield valuable 

information not otherwise obtainable. In this section 

we derive general formulas for the final polarization of 

an initially polarized beam elastically scattered from a 

substance with fixed spins. 

The final polarization P / of a scattered beam is 

given in Born approximation by 1 ,8 ,n 

d2a Vf wo \ 2 / fi2 \ 
i P / = _ ( \ E Pq t r [ ^ / ( K ) s t V , ( K ) p ] S —(k*-W)+Fqf-Eq). 

diYde' k Xl-wfi2/ </<*' \2w0 / 
(16) 

The notation used is the same as that for Eqs. (1) and (6). Allowance for the initial polarization P of the beam is 
contained in the density matrix p, given by Eq. (2). To obtain an expression analogous to (8) we substitute (6) 

where /L(K) and ft(K) are the spherical parts of the orbital and spin form factors, respectively, and J is the total angular mo­
mentum. Also Sn/ in (9) should be replaced by the total angular momentum Jnj of the ion at site (n^). This is a good approximation 
for small momentum transfer K. See, e.g., G. T. Trammell, Phys. Rev. 92, 1387 (1953); M. Blume, A. J. Freeman, and R. E. 
Watson, J. Chem. Phys. 37,1245 (1962). 
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in (16) and use the relations (7). We find 

d2a kf { 

i P / r — = - E ^ iP<?|r0t|«'><«'|2,ok>+*<?|T1t|?'><?'|p.T1|g>+i<?|p.T1t|?'><«'|T1|«> 
dQ'de' k ««' I 

2W2 / 2 W v 
/ 7 e 2 \ / T A / y e 2 \ 2 

+M —K?|PxQt|90(slr0 |e)-W—)<g |r0t|90<2lPxQ|3)-l4 —)(<?|Qt|g')x<g'|Q|g)) 
\mc2/ \mc2/ \mc2/ 

l/ye2\2 \/ye\2 \/ye\2 } 
H--( — ^ ) <^ IQ^ {^0<^r 11" - 01 ^>H--( — ^ ) <^ 11> - Q^ | ^><^^ 101 ^ > — - ( — - ) I>«^ 10^ {^> - <^ IQI ^Z»} 

2\mc2/ 2\mc2J 2\mc2/ J 
/¥ \ 

Xol (k'2-k2)+Eq>-Eq). (17) 
\2m0 / 

In deriving this expression we have omitted, as in (6), terms which vanish on averaging over randomly oriented 
nuclear spins. Equation (17) is, except for this restriction, general, and yields the polarization of the scattered beam 
for elastic or inelastic scattering. There are several terms in (17) which did not appear in Halpern and Johnson's 
treatment. These are more clearly seen when the equation is simplified by restriction to elastic scattering. To do 
this we take \qf)= \q) and we make the assumptions indicated in Eqs. (9), (10), and (11). On substituting these 
in (17) we find for the polarization of an elastically scattered beam 

da l/ye2\ 
Wr—= *P E e x p p K - ( R „ ~ R n 0 v ) ] { a n y } { a n , , , } - i P 2 : ( { a n , 2 } - { a n , } 2 ) + - — ) £ exp[*K- ( R „ - R n v ) ] 

dQ,' nj,n'j' nj 2\mC2/ «U,n' j ' 

x({a„^}S„y/„y(K)q n ;+{a n y}S n V / „^ 

l / ? e V / 
+ - ( — E expC»K-(R l t f-»„y)lS'»'y"S.y/.'i'*(K)/„y(K)( -*(4. ' i 'Xq»y)+4, 'y(P-q.y) 

+ (P-qn'y)qny-P(qn'yqny))- (18) 

The average over isotope distribution is performed exactly as before. Using the same definitions for isotopic and 
spin averages on the scattering length, we have 

da l / 7 ^ 2 \ 
I P / — = | P | E ^ K - n l 2 l ^ ( K ) | 2 - | P i V E m^})-i({a3r)+({aim+- ( — ) E e X p [ * K - ( R n 3 - R n ^ ) ] 

dQ,' n j 2\mC2/ nj,nfjf 

xf({«y '}>5 ny/ ny(K)q ny+({ay})5 n^v/„^v*(K)q n - 3v-i({a 3v})5 ny/ I 1y(K)(PXqn,) 

\ l / 7 e 2 \ 2 

+*(W>S„v'/n'y<*(K)(PXqn<y<) ) + - ( — ) E exppK- (R*-R»v)]S»yS», / .T*(K)/«/ (K) 

x f -^qnTXqny)+qnT(P-qny)+(P-q„T)qn-P(qnT-qn i )Y (19) 

The notation is as in (15). To find the polarization of mining the imaginary part of the form factor directly. 

the final beam we divide this expression by the ex- The other term appears in the pure magnetic scatter-
pression (15) for the cross section. The terms appearing [ngj a l l d [t g[Yts v[se t o a polarization of the scattered 
here which are not present in Halpern and Johnson's b e a m e v e n t h o u g h t h e i n d d e n t b e a m i s u n p o i a r i z e d . 
analysis are just those which have a factor i. Two of _, . ^ , ^ ,, . ., 
,̂ J ^ . ,1 i 4.- • 4. £ This term corresponds to the extra term in the cross 

these are present m the nuclear-magnetic interference r . 
term; these give rise to a rotation of the plane of s e c t i o n (15) discussed above, and it vanishes for a 
polarization in systems for which the form factors are simple ferromagnet. All other terms in (19) have been 
complex, and they present the possibility of deter- discussed previously. 
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EXAMPLES 

To illustrate the occurrence of the various terms in 
(19) and (15) we will consider more specific spin 
arrangements. Several well-known results are re-
derived in order to contrast them with the effects of 
the additional terms derived here. 

(a) We consider first the familiar expressions for 
pure nuclear scattering. The coherent elastic cross 
section is given by the first term of (15), 

A r / < f f l ' H E n e M 2 l ^ r ( K ) | * . (20) 

This is independent of the polarization of the incident 
beam. The factor | £ n eiK n |2 is well known as the 
diffraction interference function, which vanishes unless 
K is 2x times a reciprocal lattice vector. I t describes 
the coherent nature of the scattering, which occurs only 
in Bragg peaks. The polarization of the final beam 
which has been scattered in a coherent nuclear elastic 
process is found, on dividing the first term of (19) by 
(20), to be the same as the initial polarization, P / = P . 
This is well known, and is anticipated on physical 
grounds. The final polarization of the nuclear in­
coherent scattering is somewhat more complicated. 
The cross section in this case is given by the second 
term of (15), 

da/dtf^NZj ({oJ>})-({Oi)n (21) 

and the final polarization, obtained by dividing the 
second term of (19) by the above, is 

P / = 
£ j«{g /} ) -4<{a ,}» )+3«a j} )» ) 

Z y «{« /»-<{« /}> 2 ) 
(22) 

The complication of this expression is due to the fact 
that the incoherent scattering arises from disorder 
in the nuclear spin system as well as from the disordered 
arrangement of isotopes. The latter type of scattering 
does not lead to any change of polarization, but the 
nuclear spin disorder scattering does give rise to such 
a change. The final polarization is then an average over 
the isotopic and nuclear spin disorder scattering 
results. In the special case of pure spin disorder scatter­
ing (all constituents of the sample mono-isotopic) Eq. 
(22) can be simplified, since in this case we can ignore 
the angular brackets in the isotopic averaging of the 
scattering lengths. We have ({#;/})2=({a/}2), and 
P / = — | P . On the other hand, if all isotopes present 
have zero spin (pure isotopic disorder scattering) we 
can ignore the spin averaging of the scattering lengths, 
so that ({&*})= ({a>j}2), and P / = P . In the general 
case13 the final polarization is between — | P and P. 

(b) The occurrence of one of the extra terms in the 
expression for the polarization of the final beam can be 
illustrated by considering a uniaxial antiferromagnet 
without a center of symmetry (e.g., Cr203). In such a 

13 D. J. Hughes, Pile Neutron Research (Addison-Wesley 
Publishing Company, Inc., Reading, Massachusetts, 1953), p. 262. 

system the spins are either parallel or antiparalleHo a 
unit vector*/, and qn;==i=q, where q = i £ x ( i ? X i t ) is 
independent of n and j . The cross section becomes 

da f /2ye\ 
—=|2>*Ki2 | ^ ( K ) | 2 + ( 15 
<Kl' { \ mc2 : > 

X R e [ ^ * ( K ) ^ ( K ) / ( K ) ] P - q 

;Ys»|F„(K)/(K)lv] + (- (23) 

The purely nuclear incoherent scattering has been 
omitted here, since all other terms give rise to scattering 
in Bragg peaks. If one of the peaks is observed experi­
mentally the incoherent contribution to the scattering 
will be much smaller than the coherent. Fm(K) 
= Hy (±)y exp(iK-dy) is the magnetic structure factor 
for the unit cell. The plus or minus sign is taken if the 
spin on the yth ion in the unit cell is parallel or anti-
parallel, respectively, to n All other terms have been 
defined previously. This expression was given by 
Halpern and Johnson. I t should be noted that if the 
magnetic ions are not in a center of symmetry we should 
expect the form factor / (K) to have an imaginary part. 
This follows from the definition of the form factor as 
the Fourier transform of the spin density: 

/ ( K ) = /V K ' r p( r ) J r= f cosK-rp(r)tfr 

+i f sinKrP(r)Jr. (24) 

If the ion is in a center of symmetry p(r) = p(—r), and 
the imaginary part of the form factor vanishes. If 
p ( r ) ^ p ( _ r ) as for a noncentrosymmetric ion 
I m / ( K ) ^ 0 . The cross section (23) for scattering by a 
polarized beam does not provide a simple method of 
determination of Im/(K) . The extra terms in the 
expression for the polarization of the scattered beam do 
provide such a method, as will be seen. 

From (19) we find for the polarization of the scattered 
beam 

da 

dQ,f 
- = | E n ^ - n | 2 H P | / ^ ( K ) | 

+ (—)s R e [ ^ * ( K ) F M ( K ) / ( K ) ] q 
\mc2/ 

+ 
ye' 

+ 

\ s Im[F^*(K)FM(K)/(K)](PXq) 

/ye2\2 

• ( — )S» |F*(K) / (K) |* 
\mc2/ 

X [ 2 q ( P - q ) - g
2 P ] } , (25) 

\(ye2 
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where we have again omitted the purely nuclear 
incoherent scattering. The first, second, and fourth 
terms in this equation have been derived previously. 
The first simply states that the nuclear coherent 
scattering leaves the initial polarization unaffected. 
The second term is independent of the polarization of 
the incident beam, and it describes the manner in which 
a polarized beam may be produced by interference 
between nuclear and magnetic scattering. The last 
term describes the rotation of the direction of polari­
zation produced by purely magnetic scattering from a 
magnetized sample. I t has been discussed in detail 
recently by Izyumov and Maleev.14 

The third term is one which was omitted by Halpern 
and Johnson. I t vanishes for simple antiferromagnets 
in which each atom is at a center of symmetry, for then 
each of the structure factors and the form factor can be 
taken to be purely real. The term may be isolated in a 
relatively straightforward manner, for if P and q are 
arranged to be perpendicular to one another this term 
gives a component of polarization perpendicular to both 
P and q, whereas all other terms give rise to components 
along either P or q. Separate determination of this 
quantity would be of use in form factor studies. I t 
should be emphasized that the above expression is for a 
single domain antiferromagnet, and it should in general 
be averaged over all directions rj of magnetization. 

(c) Scattering from a spiral spin4,5 arrangement 
illustrates the occurrence of the other additional terms 
in (15) and (19). We consider an antiferromagnetic 
sinusoidal spiral in which the spins all lie in a plane 
perpendicular to the direction of propagation of the 
spiral. For simplicity we consider a single atom per unit 
cell. We take a system of axes described by three 
mutually perpendicular unit vectors Ui, $2, z23 such that 
U\ and $2 He in the plane of the spins and u% lies along 
the direction of propagation. The unit vectors rjn giving 
the direction of the spin in the unit cell n are then 
expressible as15 

*?n=U\ cose • n + ^ 2 sine • n, (26) 
= J (u_exp( te -n)+u + exp(— i t -n ) ) , 

where u±—Ui±iu2 and e= (2ir/\s)u3, where Xs is the 
wavelength of the spiral.15 In this case the magnetic 
Bragg peaks are split into satellite peaks so that the 
magnetic and nuclear peaks occur in different places. 
There is accordingly no interference between the nuclear 
and the magnetic scattering, and we will write down the 
magnetic cross section alone. On substituting (26) in 
(15) we find that the last term, proportional to 
P- (qn 'Xqn) does not vanish in this case, as it did for the 

14 Yu. A. Izyumov and S. V. Maleev, Zh. Eksperim. i Teor. 
Fiz. 41, 1644 (1961) [translation: Soviet Phys.—JETP 14, 1168 
(1962)]. 

™ W. C. Koehler, Acta Cryst. 14, 535 (1961). 

antiferromagnet. This term together with the ordinary 
magnetic cross section gives the total magnetic scatter­
ing from a spiral : 

dff/Xl' = \ (ye2/mc2)2S2 | / (K) |2 

X { [ l + ( i t ^ 3 ) 2 + 2 ( P - ^ ) ( ^ ^ 3 ) ] 
X | E n e x p p ( K + e ) . n ] ] 2 + [ l + ( i ? : ^ 3 ) 2 

- 2 ( P - X ) ( ^ - ^ ) ] | E n e x p p ( K - e ) - n ] | 2 } . (27 

This shows the splitting into two peaks such that 
K + e = T and K — £ = T , where t is 27r times a reciprocal 
lattice vector. The polarization dependence arose from 
the above mentioned term in (15). If the scattering 
vector K is parallel to the axis Hz of the spiral and if the 
incident beam is polarized parallel to u$ as well, the 
peak for which K — C = T vanishes, while that for which 
K + £ = T increases to twice its intensity for the case of 
an unpolarized incident beam. If the direction of 
initial polarization is made antiparallel to the axis 
ilz of the spiral we have the opposite occurring, with 
the K + e = T peak vanishing and the K— e=T peak 
increasing its intensity. Experimental detection of this 
effect requires the preparation of a crystal in which 
some bias is found in the size of domains with spiral 
axes parallel and antiparallel to u%. The polarization 
of the scattered beam will be written down only for the 
case of an unpolarized incident beam. We obtain, on 
substituting (26) in (19) and setting P = 0 , 

da 1 / ye2\2
 A A 

J P , — = - ( — )S2\f(K)\2K(K-u3) 

X { - | E e x p p ( K + e ) . n ] | 2 

n 

+ |Zexpp(K-E)-n]| '}. 
n 

Hence, the final polarization is parallel to K for the 
K—e=T reflection and antiparallel to K for the K + e = T 
reflection. The effect was first pointed out in this form 
by Overhauser.4 

These two examples illustrate the importance of the 
omitted terms for experiments that are easily performed 
with present techniques. All formulas for scattering 
of polarized beams by other arrangements of ordered 
spins may be derived in the same way from (15) 
and (19). 
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